- Как осуществляется армирование колонн?
- 1 Особенности и назначение
- 1.1 Конструкция
- 1.2 Расчет
- 1.3 Процент армирования
- 2 Технология, схема и материалы
- 2.1 Пример армирования колонн при строительстве (видео)
- 2.2 Армирование дополнительных элементов
- Статьи по теме:
- Обсуждение: есть 1 комментарий
- Добавить комментарий Отменить ответ
- Алгоритм конструирования колонны
- Шаг 1. Подбираем продольную арматуру колонны.
- Шаг 2. Подбираем поперечную арматуру.
Как осуществляется армирование колонн?
Колонны — железобетонные несущие конструкции, предназначенные для передачи нагрузок от вышестоящих конструкций на фундаменты либо стены.
Колонны используют на этажах, для монтажа на их капители или консоли вышестоящих перекрытий. В них также есть опора в виде подколонника.
Самый важный момент при строительстве колонн – расчет и устройство их армирования. О нем сейчас и поговорим.
1 Особенности и назначение
Армирование железобетонных колонн для конструкции фундамента и несущих стен необходимо сразу по нескольким причинам.
- Повысить прочность монолитной железобетонной конструкции.
- Улучшает взаимодействие разных частей колонн (основной опоры, капители, подколонника, консолей).
- Предотвращает появление трещин.
- Позволяет осуществлять ремонт железобетонных конструкций.
- Понижает шанс разрушения опоры со временем.
- Позволяет выливать крупные несущие опоры с сечением 300×300 и 400×400 мм без опасений за их судьбу в будущем.
Читайте также: какую сетку применяют для стяжки пола, и как правильно ее использовать?
Все это возможно благодаря работе арматурного каркаса. Использование арматуры для колонн железобетонных решает основную проблему бетона – его хрупкость.
Арматурный каркас колонны
Прелесть железобетонных конструкций фундамента и несущих опор заключается в их совместной работе. Бетон для фундамента отлично работает на сжатие, а арматура на изгиб. Поэтому схема их соединения позволяет создать универсальный тип строительных элементов.
Качественный арматурный каркас за счет своего взаимодействия с бетоном, защищает его от образования трещин, не дает ему разрушиться вследствие течения времени или наружных воздействий, к примеру, сейсмических смещений.
Да и вообще, строительство капитальных зданий, особенно промышленных, немыслимо без использования железобетонных конструкций фундамента и опор.
к меню ↑
1.1 Конструкция
Рассмотрим конструкцию железобетонных колонн, дабы понять в будущем, какая им нужно схема и чертеж.
Чертеж любой несущей опоры, передающей нагрузки на полость фундамента показывает, что состоит она из нескольких базовых частей. В частности схема предусматривает наличие:
- основной несущей части;
- капителей или консолей;
- подколонника.
Чертеж основной части – удлиненный прямоугольник, минимальный размер сечения которого примерно равен 150×150 мм. Максимальный размер сечения не ограничивается и показателями в 500×500 мм, хотя последние разумно использовать только при взаимодействии с конструкциями плоского фундамента.
В верхней части колонн располагаются капители или консоли – это опоры под перекрытия. Капители являются выступами, на которые перекрытия можно монтировать. Такая схема упрощает работу строителям, позволяет сэкономить на материалах, в частности, существенно сократить использование балок.
Схематическое изображение колонн с консолью и капителью
Впрочем, капители с тем же успехом применяют в качестве основания под балки.
Что же до железобетонных элементов типа подколонника, то их схема являет собой образец обычной подошвы. Конструкция стандартного подколонника напоминает ступенчатое расширение под основой колонны. Задача подколонника – снять точечное напряжение и равномерно передать его на стены фундамента.
Использование подколонника необязательно, без него вполне можно обойтись, когда предусматривается монтаж ленточного или свайного фундамента. А вот для фундамента плиточного, наличие подколонника просто необходимо.
к меню ↑
1.2 Расчет
Прежде чем начать разбор армирования колонны, нужно внимательно осмотреть чертеж и провести расчет. Расчет – краеугольный камень всех подобных процессов. Расчет позволяет человеку четко определиться, что ему нужно, для чего и в каких количествах.
Стандартный расчет колоны предусматривает учет ее несущих нагрузок, типа фундамента, наличие или отсутствие дополнительных элементов (капители подколонника и т.д.) марка бетона и т.д.
После того как будет выполнен расчет, составляется чертеж и схема армирования. Чертеж показывает, сколько арматуры необходимо, какая это должна быть арматура, в каком порядке ее стоит вязать, какие дополнительные элементы использовать.
Выполняется расчет с помощью специальных формул. В них закладывается сопротивление материалов, соотношение уровня предельных нагрузок с желаемым и т.д.
Осуществляют расчет исключительно специалисты. Спроектировать армирование несущих опор человек без опыта не сможет. Не хватит знаний, и что важнее, опыта.
к меню ↑
1.3 Процент армирования
Для правильного армирования, как мы уже отметили, нужен качественный расчет и правильно составленный чертеж или схема.
Пример армирования каркасного здания на колоннах с двумя консолями
В расчет закладывается и такой показатель, как процент армирования или заполнения арматурой. Процент армирования указывает на удельный вес или долю арматурного каркаса в общей схеме конструкции.
Существует максимальный и минимальный процент армирования железобетонных опор. Минимальный процент – грань, ниже которой нельзя заходить. Если армирование железобетонных конструкций не покроет минимальный процент, то конструкция считается ненадежной и даже потенциально опасной.
Максимальный процент – предел, после которого конструкция из железобетонной превращается в сталежелезобетонную. Превышать максимальный процент тоже нежелательно, особенно в гражданском строительстве.
Показатель, минимального процента армирования колонны равняется 3%. Показатель максимального процента армирования равняется 6%. Однако расчет показывает, что для зданий небольших хватит и 5%, а в некоторых случаях и 4% в удельном весе.
к меню ↑
2 Технология, схема и материалы
Технология армирования довольно проста, так как заключает в себя всего несколько базовых рабочих этапов.
Нужно создать арматурный каркас поэтапно, связать его в единую конструкцию, при необходимости осуществить поперечное или косвенное армирование, а затем установить в опалубку. Основная задача строителей – связать правильный каркас. Схема действий здесь очень проста.
Берется несколько крупных круглых стержней с диаметром сечения от 20 мм. Как правило, это арматура круглых сортаментов, класса А3 или выше.
Стержни по длине должны полностью отвечать длине колонны, за вычетом 10-15 см на слой защитного бетона.
Минимальное количество стержней для рабочего каркаса – три. Что впрочем, вполне очевидно, ведь нам нужен не плоский, а объемный каркас.
Каркас колонны с поперечным укреплением
На практике используют от четырех до шести стержней в обычных колоннах и больше восьми в сильно нагруженных. Если колонна не квадратная, а вытянута в одном из направлений, то ее укрепляют дополнительной арматурой.
Продольную арматуру связывают между собой в нескольких местах. Однако обойтись только ею не удастся. При длине колонн от 2 метров, продольные изделия под давлением начнут выпячиваться, что не есть хорошо. Для предотвращения подобных проблем используют косвенное или поперечное укрепление каркаса.
Косвенное укрепление заключается в обвязке длинной арматуры поперечными короткими стержнями. Косвенное укрепление делается с интервалами. Желательно связать каркас поперечными элементами с интервалом в 20-50 см в зависимости от уровня несущих нагрузок.
Косвенное армирование – проверенный временем способ, очень удобный и простой. Без него сейчас создание несущих железобетонных колонн крайне нежелательно.
к меню ↑
2.1 Пример армирования колонн при строительстве (видео)
2.2 Армирование дополнительных элементов
Не стоит забывать о том, что конструкция дополнительных частей колонны, таких как капители, консоли и опорные конструкции подколонника тоже нуждаются в армировании.
При этом каркас для той же капители нужно еще и правильно интегрировать в целевую несущую конструкцию.
Образец капители – плоский выступ на верхнем конце колонны. Следовательно, для каркаса капители нужна арматурная сетка. Тут все достаточно просто. Берем арматуру толщиной от 15 мм, и вяжем из нее квадратную сетку с ячейками от 10×10 см.
Сетку интегрируем верхнюю часть каркаса путем подвязки проволокой. Как правило, хватает одноуровневой сетки. В крайнем случае, по ободу устраивают еще один стабилизирующий каркас, состоящий из одного-двух элементов.
Пример армирования подколонника сеткой
С консолями ситуация несколько иная. Консоль, в отличие от капители – это бетонный выступ на одном из краев колонн. Каркас для него являет собой двухуровневый выступ короткой арматуры, прикрепленный к одному из поперечных стержней.
Схема подколонника сильно напоминает аналогичную у монолитной капители, только подколонник делается толще, может иметь несколько ступенек и размещается на нижней части опоры.
Следовательно, каркас для него делается как минимум двухуровневый, из такой же сетки. В остальном отличий от чертежа каркаса для капители практически нет.
Если подколонник ступенчатый, то есть имеет несколько расширений с разными размерами, то сетку делают под каждую ступеньку и перевязывают проволокой. Чем больше ступеней, тем тоньше нужна арматура. На одну ступень берут арматуру толщиной в 15-20 мм, а на три хватит арматуры толщиной до 12 мм.
Статьи по теме:
Портал об арматуре » Армирование » Как осуществляется армирование колонн?
Обсуждение: есть 1 комментарий
Судя по всему статья писалась не конструктором. По всему разделу есть замечания, но в принципе ничего критичного. В общих словах суть передана верно.
Мне же хотелось бы заострить внимание на минимальном проценте армирования колонн.
«Если армирование железобетонных конструкций не покроет минимальный процент, то конструкция считается ненадежной и даже потенциально опасной»
Это не так. Конструкция просто не будет считаться железобетонной в таком случае, а бетонной. И рассчитываться будет соответствующе. А вот уже расчет покажет надежная она или нет. Может там только бетона и хватит.
«Показатель, минимального процента армирования колонны равняется 3%»
Это неверно. Согласно пункта 10.3.6 СП63 для внецентренно-сжатых элементов (коим является колонна) min процент армирования 0,25. При проценте больше 0,25% колонна считается железобетонной. При меньшем проценте бетонной.
«Показатель максимального процента армирования равняется 6%»
Максимальный процент согласно СП 10% в сечении с учетом нахлеста стержней. То есть в сечении без нахлеста, например, где-нибудь в середине колонны максимальный процент равен 10/2=5%.
Дальше по тексту рекомендации по анализу достаточности армирования тоже даны соответственно неверно. Я обычно руководствуюсь следующим алгоритмом:
Добавить комментарий Отменить ответ
Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.
Алгоритм конструирования колонны
После расчета у конструктора на руках оказываются габариты сечения колонны и площадь продольной и поперечной арматуры.
В какой последовательности нужно действовать?
Рассмотрим конструирование на примере.
Понятно, что с опытом конструирования так дотошно выполнять каждый пункт нет необходимости, но в данной статье я хочу изложить все очень подробно.
Пусть у нас будет монолитная колонна второго этажа многоэтажного здания сечением 300х300 мм, высотой 3 м, площадь продольной арматуры колонны Аs = Аs’ = 9,3 см2 (момент в колонне действует в одном направлении); площадь одного хомута в нижнем сечении колонны 0,20 см2 (при шаге хомутов 150 мм), в среднем сечении по расчету поперечная арматура не требуется.
Арматура колонны принята по ДСТУ 3760, класс арматуры А400С (периодического профиля), класс арматуры хомутов А240С (гладкая арматура). Каркас колонны – вязаный. Стержни стыкуются путем нахлестки. Класс бетона В25.
На колонну опирается монолитная балка сечением 350х400(h) cо следующим армированием: нижняя арматура балки 3d16, верхняя арматура балки 2d16.
Шаг 1. Подбираем продольную арматуру колонны.
Заглянем в таблицу из приложения 5 руководства:
Мы видим, что нам подходит либо 2 диаметра 22мм (9,82 см2 > 9,3 см2), либо 3 диаметра 20мм (9,42 см2 > 9,3 см2), либо 4 диаметра 18мм (10,18 см2 > 9,3 см2).
Столько вариантов выбрано для примера, обычно можно обойтись и двумя вариантами, а то и сразу на одном остановиться.
Посчитаем для начала площадь арматуры в итоге.
Если у одной грани будет 2 стержня, то всего их будет 4. Тогда площадь сечения четырех стержней d25 равна 19,64 см2.
Если у одной грани будет 3 стержня, то всего их будет 8. Тогда площадь сечения восьми стержней d20 равна 25,13 см2.
Если у одной грани будет 4 стержня, то всего их будет 12. Тогда площадь сечения двенадцати стержней d18 равна 30,54 см2.
На первый взгляд, можно принять армирование стержнями d25, т.к. площадь сечения в этом случае самая экономичная.
До принятия окончательного решения стоит прорисовать оба сечения арматуры и посмотреть, во что выльется армирование.
При этом не забываем, что при прорисовке нужно учитывать не номинальный, а реальный диаметр стержней, заглянув в ДСТУ 3760:2006, мы узнаем, что размер одного выступа арматуры h равен 0,07dн (для стержней диаметром 18 мм и меньше) и 0,065dн (для стержней диаметром 20 мм и больше).
Определим реальный диаметр стержней (с учетом двух выступов):
d18: 18 + 0,07∙18∙2 = 21 мм;
d20: 20 + 0,065∙20∙2 = 23 мм;
d25: 25 + 0,065∙25∙2 = 28 мм.
Определимся с защитным слоем для рабочей арматуры колонны (таблица 23 руководства): защитный слой должен быть больше 20 мм и больше диаметра стержня рабочей арматуры (18, 20 или 25 мм). По опыту проектирования рекомендую принимать защитный слой для монолитных колонн не менее 25-30 мм.
Расставим стержни для трех вариантов:
Все получилось неплохо. Во всех случаях стержни располагаются равномерно, защитный слой около 25 мм выдержан, минимальное расстояние 50 мм между стержнями в свету (см. 3.68 руководства) соблюдено.
Но теперь мы возвращаемся к исходным данным и вспоминаем, что стержни в колонне стыкуются нахлесткой, а значит, в сечении у нас будут не только нарисованные стержни, а еще и выпуски из колонны нижнего этажа. Добавим к нашим рисунками выпуски (розовым цветом) и посмотрим, что получилось. Выпуски всегда нужно стараться располагать так, чтобы просветы между стержнями были как можно больше (для лучшего бетонирования).
Что мы видим теперь? В колонне, заармированной d18 встречается расстояние между стержнями 32 мм, что меньше допустимых 50 мм. А это значит, что при стыковке стержней внахлестку вариант армирования с 12 стержнями недопустим – качественно забетонировать такие колонны будет невозможно.
Армирование колонн d20 и d25 нас устраивает. Чтобы сделать окончательный выбор, сравним суммарную площадь арматуры (пользуясь таблицей из приложения 5 руководства) и выберем самый экономичный вариант:
8d20: Аsum = 25,13 см2;
4d25: Аsum = 19,64 см2.
Итак, мы останавливаемся на варианте армирования восьмью стержнями d25, т.к. он однозначно экономичнее и менее трудоемок для строителей.
Шаг 2. Подбираем поперечную арматуру.
Из исходных данных мы имеем:
площадь одного хомута в нижнем сечении колонны 0,2 см2 (при шаге хомутов 150 мм), в среднем сечении по расчету поперечная арматура не требуется
Прежде, чем определять диаметр хомутов, определим их шаг. Для начала заглянем в таблицу 25 руководства:
У нас поперечная арматура класса А240С с расчетным сопротивлением 2250 кг/см2 Комментарии